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Universality of a dynamical percolative approach to 1/fγ noise
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Abstract. A dynamical percolative model explaining the universality of 1/fγ noise is reported. Exponents
γ ranging from 0 to 2 are obtained under the hypothesis that noise originates from random switching
events between two ON–OFF states in elemental parts (switchers) of a physical system. The usual noise
behaviour with γ very close to 1 in an arbitrarily wide frequency range is obtained assuming a statistical
distribution of switcher relaxation time τ proportional to τ−1, as in McWhorter’s model. The impact of
these results with respect to recent self-organised criticality models is discussed.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions – 05.40.Ca Noise –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

The astonishing appearance of 1/f noise in a large number
of different phenomena is a very intriguing problem, which
till now has not been completely understood. One of the
most ambitious objectives is surely the determination of a
“universal” law, able to explain the rise of 1/f noise from
elemental events. In such a way, the problem would be
reduced to identify such events in each phenomenon. Ac-
tually, signals with 1/f power spectra were obtained with
theoretical models and simulations; however, the univer-
sality of these models is still lacking, since models are often
unrealistic or applicable only to delimited problems.

In the present work, we introduce a dynamical per-
colative model, where 1/fγ noise is simply recognised in
the evolution of a network of elemental objects (switch-
ers) randomly jumping between two states, ON and OFF,
ruled by a time dependent probability distribution. We
show that the general 1/fγ behaviour with the exponent
γ continuously varying between 0 and 2 is strictly related
to the jumping probabilities of the switchers and that it
holds in a wide frequency range (typically two frequency
decades). The usual 1/f noise behaviour with slope very
close to 1 in an arbitrarily wide frequency range is ob-
tained assuming a statistical distribution of switcher re-
laxation time τ proportional to τ−1.

Our approach is entirely general and it can be applied
to any physical system obeying a linear relation between
an external constant input and the output of the system,
where the time dependent transfer function results from
the combined behaviour of several switchers. Examples
are the voltage fluctuations of granular superconductors
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as well as trapping-detrapping mechanisms in semicon-
ductors, but extensions to many natural phenomena are
straightforward.

2 1/f noise in recent models

Recent works trying to explain the 1/f noise from ele-
mental and universal mechanisms can be grouped in three
different research approaches: 1) the sandpile model or
self-organised criticality (SOC); 2) the percolative-like ap-
proach and 3) the avalanche model and clustering transi-
tion phenomena.
1) Starting from the pioneering work of Bak, Tang and

Wiesenfeld [1] based on the criticality conditions of a
sandpile in slow motion or an ensemble of coupled os-
cillators, a dissipative SOC model was developed [2,3]
and power spectra with 1/f trend in a wide frequency
range (four decades) were obtained in 1D and 2D.

2) In percolative models [4–8] two-phase systems are con-
sidered. Varying the fraction of one phase with respect
to the other, the fluctuations of a physical quantity
related to the two phases are computed for different
system configurations and are treated as the intensity
of “noise” related to the physical quantity. The time
evolution of these systems, however, was seldom con-
sidered [9] and spectral noise structure was not inves-
tigated.

3) Avalanche [10–12] and clustering [13] models were
introduced to explain the displacements of particles
starting from initial localised non-equilibrium insta-
bilities which propagate through the interior of a
sandpile-like column as in the SOC model. Equiva-
lently, these phenomena are related to sequences of
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clusters of elemental events or pulses. Both the sand-
pile and the avalanche models, under suitable condi-
tions, can be recognised as extensions of percolative-
type transitions since the stable configurations of the
dynamical systems are similar to the critical point of
the percolative framework [1].

Avalanche models give rise typically to 1/fγ spectra with
1.5 ≤ γ ≤ 2 in a wide frequency range in agreement
with experimental results (superconducting vortex [14],
Barkhausen effect [15], vacancy and dislocation dynam-
ics in metals [16]), whereas models basically derived from
SOC lead typically to γ ≈ 1 and, in the limit without
dissipation, to a flat spectrum in a wide range at low fre-
quencies and to γ ≈ 1.5 at high frequencies [2].

Because of the boundary for γ respectively below
and above a critical value of about 1.5, both SOC and
avalanche models cannot attain the character of univer-
sality invoked in the above approaches.

3 The dynamical percolative model

In order to overcome the above discrepancies, in the
present paper, a dynamical percolative model is devel-
oped to describe the fluctuations of the generalised re-
sistance R(t) of a physical system composed of many el-
emental objects randomly jumping between two states,
ON and OFF. The model gives constant power spectral
density SR(f) at low frequencies and a f−2 law at high
frequencies: in this way, the crucial requirement of the
convergence of the power spectrum is satisfied. The tran-
sition from SR(f) ∼ const. at low f to SR(f) ∼ f−2 at
high f is smooth, and it is possible to make it fit with a
SR(f) ∼ f−γ law, with 0 ≤ γ ≤ 2 on a limited frequency
range. We will show that with a further simple hypothe-
sis an arbitrarily wide frequency range with SR(f) ∼ f−1

is obtained. Actually, the subsequent percolative analysis
can be extended to any physical system obeying a linear
relation V (t) = R(t)I between an external constant input
I and its output V (t), where the transfer function R(t) re-
sults from the combined behaviour of several independent
resistor-like objects. In the present model, the transitions
of elemental links in a 3D network are viewed as the source
of noise. Unlike other percolative models, where links are
assumed to fluctuate, our links behave as switches, which
abruptly change their generalised resistance r(t) jumping
between two well-defined ON and OFF states. These ob-
jects are to be named switchers, to distinguish them from
links usually considered in other percolative models. The
ON state corresponds to a shorted switcher (r = 0), while
the OFF state corresponds to a switcher with a finite re-
sistance r. For simplicity, we assume that the value of the
resistance in the OFF state is the same for each switcher.
Thus, each switcher acts as a random telegraph and the
combination of switchers gives rise to fluctuations of the
network resistance R(t).

In order to quantify this noise, we introduce the per-
colative parameter p and the dynamical parameter q,
which governs the time evolution of a single switcher. The

parameter p represents the probability that a switcher is
in the ON state at time t, whereas q is the probability
that the same switcher is in the OFF state at time t+∆t,
if it is ON at time t. The definition of q depends on the
length of the interval ∆t. We assume that ∆t is sufficiently
small to neglect multiple link switching. Both p and q are
supposed time independent. The autocorrelation function
Cr(t) ∼ e−t/τ of a switcher resistance r(t) can be com-
puted [17] by Kolmogorov equations:

dPij

dt
(t) =

∑
k

Pik (t)
dPkj

dt
(0) (1)

where Pij (t) are the transition probabilities between the
ON and OFF states, as discussed in details in the Ap-
pendix of reference [17]. The probabilities that a signal
remains unchanged after the short time interval∆t are P11

and P00 whereas P01 and P10 give the transition probabil-
ities between the two states in the same time interval. As
a result, the decay time τ of the autocorrelation function
Cr(t) turns out to be:

τ =
(1− p)∆t

q
· (2)

If two opposite boundaries of the 3D network are con-
nected to a constant current source I, our purpose is
to evaluate the fluctuations of the voltage V (t) between
the two terminals produced by the jumping of switchers,
or, equivalently, the time evolution of the network resis-
tance R(t).

If the fraction p of switchers with r = 0 is very large,
we can always find an ON path from one extremity of
the network to the other; in such case R = 0. On the
contrary, if p is low enough, such an ON path does not ex-
ist, so that the equivalent resistance R differs from zero.
This fact introduces necessarily a percolative aspect in our
model. From percolation theory, it is well known that, if
the size of the network is infinite, a well-defined value of
p = pc appears; for p < pc the network is resistive, whilst
for p > pc the network resistance is zero. The percola-
tive threshold pc can be evaluated by numerical compu-
tations for several systems: in the case of a simple cubic
network, pc = 0.25. The behaviour of the equivalent resis-
tance R near the percolative threshold is R ∼ (pc − p)s,
with the critical exponent s = 0.76 (for a simple cubic
network) [18].

In order to obtain the time evolution of a system of
switchers for an adequate number of p and q values, a cubic
network of 3×103 links was considered, whose resistances
evolve in the random telegraphic way discussed above. For
each configuration of the system, the network resistance R
was computed by means of a transfer matrix method [19].

4 Results and discussions

In Figure 1, the effect of the dynamical parameter q is
shown: in the graphs in the first column, the dynamical
parameter q = 0.15 and, in the second column, q = 0.015.
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Fig. 1. Effect of dynamical parameter q on r(t) (single switcher
resistance), on R(t) (whole network resistance) and on SR(f)
(power spectral density). In the first column, q = 0.15; in the
second column, q = 0.015. The percolative parameter p is fixed
at 0.2. All the reported properties are in arbitrary units. In (e)
and (f), the best-fit linear behaviours are also shown.

In every case, p = 0.2. In Figures 1a vs. 1b the behaviour
of the resistance r(t) of a single switcher, randomly chosen
inside the network, is reported, and in Figures 1c vs. 1d
the equivalent resistance of the whole network, R(t), is
reported. In Figures 1e vs. 1f, the power spectral densi-
ties SR(f) of signals presented in Figures 1c vs. 1d are
shown. Each spectrum is comprised between f = 1/N∆t
and 1/2∆t, where N∆t is the total length of the simula-
tion.

The combination of several switching events gives rise
to small jumps of the system resistance R(t). For a large
number of switchers and an interval ∆t small enough,
these jumps are actually fluctuations of R(t). The pa-
rameter q influences the rate of fluctuation of the net-
work; the fluctuations become slower and more correlated
as q decreases. SR(t) behaves as f−γ with γ = 0.67
(q = 0.15) and γ = 1.59 (q = 0.015). The log-log be-
haviour of the power spectral density was linearly fitted
in two decades frequency range to obtain the parameter
γ values by means of the facilities provided by MATLAB
code [20]. The errors in the calculations were estimated as

Fig. 2. Dependence of the noise exponent γ on the dynamical
parameter q at p = 0.1 (◦) and p = 0.2 (•).

small as 0.01–0.03, i.e. negligible for the following discus-
sions and similar to typical experimental uncertainties in
the estimates of the parameter γ [21].

Numerical simulations with N = 103 and different val-
ues of p and q were performed. In every case, γ decreases
at increasing the dynamical parameter q; γ is always com-
prised in the range 0 ≤ γ ≤ 2 (Fig. 2).

Thus, with the present percolative model and within
the simplest assumption to attribute the same values
of the RTS parameters to all the junctions in the net-
work, the fundamental result that the coefficient γ ranges
from 0 up to 2 is obtained. At high q, γ tends to zero, a
reasonable result since fluctuations behave as white noise
when the switching rates are high. At low q, γ tends to
the constant value 2, consistently with avalanche models
[10,15,16]: when q is low, the fluctuations of the network
resistance R(t) are essentially due to single isolated events
characterised by large τ . The increase of γ with dissipa-
tion observed in SOC models [2] is also consistent with our
results, since characteristic times τ become longer when
dissipation increases.

From the definition of q and the results of Figure 2,
it can be argued that SR(f) on many decades has the
asymptotic behaviour

SR(f) ∼
{

const. at low frequencies
f−2 at high frequencies. (3)

The transition from the constant regime at low fre-
quencies to f−2 behaviour at high frequencies should be
so smooth as to make possible the approximation SR(f) ∼
f−γ on few decades, as reported in Figures 1e and 1f.

The experimental observation that many systems be-
haves 1/fγ with γ close to 1 in a wide frequency range [22]
is explained by the present model with the further hypoth-
esis that the parameter q is spatially distributed over the
switchers. In particular, for a fixed value of ∆t, a distribu-
tion of q between qmin and qmax with a statistical weight
g(q) ∼ q−1 is assumed. With respect to the calculations
giving the results reported in Figure 2 in which γ = γ(q)
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Fig. 3. Power density spectral noise (in arbitrary units)
obtained assuming a distribution of q values between two
values qmin = 5 × 10−4 and qmax = 5 × 10−2 with a statis-
tical weight g(q) ∼ q−1. This choice gives a change in the fre-
quency behaviour at the corner frequencies fmin ≈ 10−4 and
fmax ≈ 10−2. Upper (solid) curve is obtained with p = 0.2,
lower (dashed) curve with p = 0.1. Both spectra were obtained
averaging eight independent simulations. The lines with γ = 0,
γ = 1, γ = 2 at f < fmin, fmin < f < fmax, f > fmax, respec-
tively, are reported shifted downward as eye-guide.

and q is kept constant over the network of switchers in
each simulation consistently with ordered physical or nat-
ural systems, the latter assumption of allowing q to vary
between two fixed limits is more appropriate, for instance,
to study inhomogeneous systems. As a consequence of (2),
where τ ∝ q−1, our assumption corresponds to the statis-
tical distribution of decay times g(τ) ∼ τ−1. The intro-
duction of two limiting values of the dynamical parame-
ter q and the relationship between q and τ distributions
leads to two corner frequencies fmin and fmax, as shown
in Figure 3. It is interesting to observe that the corner
frequencies are approximately equal to

fmin =
1

2πτmax
, fmax =

1
2πτmin

, (4)

where τmin and τmax are the extreme values of the decay
time of the autocorrelation function Cr(t). At small values
of p (p ≈ 0.1, lower curve in Fig. 3) γ assumes values
around 0 in the lower frequency region, of 1 in the range
fmin < f < fmax and slightly lower than 2 in the high
frequency range.

The width of the region with SR(f) ∼ f−1 can be ar-
bitrarily increased by changing values of τmin and τmax,
obtaining the 1/f behaviour between fmin and fmax in a
suitably wide range depending upon the choice of the cor-
responding decay times. From our simulations with higher
values of p (p = 0.2, upper curve in Fig. 3), closer to the
percolative threshold, three ranges of linear dependence of
the SR(f) with frequency are still found, but lower values
of γ are obtained in the second and third range (γ ≈ 0.6
and γ ≈ 1.77, respectively). Results are summarised in
Table 1 to show that three ranges of linear behaviours

Table 1. Estimates of the parameter γ in the three frequency
ranges delimited by f1 and f2 at two selected values of the
percolative parameter p.

f1 < f f1 < f < f2 f > f2

p = 0.1 0.13 ± 0.16 −0.99± 0.02 −1.92± 0.01
p = 0.2 0.04 ± 0.16 −0.68± 0.02 −1.77± 0.01

are actually obtained in the three frequency ranges. In
the lower range where statistical errors are intrinsically
larger, we can only claim that the expected result γ = 0
is consistent with the calculations.

Among the most typical cases that can be explained by
the present dynamical percolative model, we indicate as
examples voltage fluctuations induced by the flow of a con-
stant current in a superconductor in a magnetic field [17],
density variations of vacancies and dislocations [16] as
well as trapping-detrapping conductivity of semiconduc-
tors [23], hopping conductivity mechanisms in thin films
and ionic current through biological membranes. For in-
stance, the temperature dependence of γ was shown by
experiments on semiconducting GaN-based MODFETS
devices: experiments show that γ decreases from 1.03 to
0.85 and from 1.0 to 0.9 when temperature decreases from
300 K to 250 K and from 220 K to 130 K, respectively [21].
At decreasing temperature, trapping of carriers at inter-
faces will lower the carrier concentration and it will en-
hance noise levels in a thermally activated process. As
shown in Table 1, in our simulations this effect is repro-
duced at increasing the percolative parameter p slightly
above 0.1, i.e. by driving the system towards the perco-
lation limit (at p = 0.25 as discussed above). Direct ev-
idence of the noise from modulations of the percolation
path lengths (and thus of the percolative parameter p)
was also reported in Si:H thin films [24]. Previous noise
experiments in thin films showed lower slopes (lower γ)
in the central frequency range [22,25,26]. Due to their
intrinsic nature, films can be supposed closer to critical
conditions concerning the percolative threshold. In other
systems, as in GaAs-based diodes, however, tunnelling be-
tween traps was postulated to give carrier fluctuations
and the 1/f noise, as in the well known McWhorter’s ap-
proach [27]. Following the suggestions by Lust-Kakalios [9]
and Surya et al.’s works [21,24], noise is related to widely
non-uniform distribution of trapping times, related to the
corresponding distribution of the depth of the energy wells
of the traps. In our approach, a wide energy and trapping
times distribution leads to a wide distribution of the dy-
namical parameter q: mainly, low values of the γ coeffi-
cient will be selected accordingly to Figure 2 and noise
is high as observed experimentally even at relatively high
frequencies.

5 Conclusions

Our percolative approach with the dynamical parameter q
common to the network of switchers predicts signals with
1/fγ in the SR(f) on two decades typically, where γ(q)
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is comprised between 0 and 2 at q varying in the range
10−3–1. With the further simple assumption that the dy-
namical parameter is distributed between two character-
istics values of the dynamical parameter over the whole
switcher network, SR(f) is 1/f with γ close to 1 on an ar-
bitrarily large number of decades. Thus, the variety of ex-
perimental frequency behaviour of noise in transport phe-
nomena between the extreme cases γ = 2 (Barkhausen,
vacancies, dislocations) and γ = 0 (white noise), and also
the striking case of γ close to 1 (biological membranes,
semi and superconductors, as well as most of the many
examples quoted above) is accounted for within the same
framework developed in the present paper.

More specifically, our dynamical percolative model can
be extended straight to every physical system whose ele-
ments exhibit two opposite randomly switching states ON
and OFF as to any systems flashing between two different
configurations [28].

References

1. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987).

2. P. De Los Rios, Y.C. Zhang, Phys. Rev. Lett. 82, 472
(1999).

3. S. Maslow, C. Tang, Y.C. Zhang, Phys. Rev. Lett. 54, 1718
(1985).

4. D.C. Wright, D.J. Bergman, Y. Cantor, Phys. Rev. B 33,
396 (1986).

5. S. Maslow, C. Tang, Y.C. Zhang, Phys. Rev. Lett. 83, 2449
(1999).

6. L.B. Kiss, P. Svedlindh Phys. Rev. Lett. 71, 2817 (1993).
7. E. Milotti, Phys. Rev. E 51, 3087 (1995).
8. A.A. Snarskii, A.E. Morozovsky, A. Kolek, A. Kusy, Phys.

Rev. E 53, 5596 (1996).

9. M.L. Lust, J. Kakalios, Phys. Rev. Lett. 75, 2192 (1995).
10. S. Field, J. Witt, F. Nori, X. Ling, Phys. Rev. Lett. 74,

1206 (1995).
11. J. Wang, S. Kadar, P. Jung, K. Showalter, Phys. Rev. Lett.

82, 855 (1999).
12. S.S. Manna, D.V. Khakhar, Phys. Rev. E 58, R6935

(1998).
13. B. Kaulakys, T. Meskauskas, Phys. Rev. E 58, 7013 (1998).
14. R.A. Richardson, O. Pla, F. Nori, Phys. Rev. Lett. 72,

1268 (1994).
15. G. Durin, in Proc. 14th Intern. Conf. on “Noise in Phys-

ical Systems and 1/f fluctuations” (World Scientific, Sin-
gapore, 1997).

16. M. Celasco, F. Fiorillo, P. Mazzetti, Phys. Rev. Lett. 36,
38 (1976); G. Bertotti, M. Celasco, F. Fiorillo, P. Mazzetti,
J. Appl. Phys. 50, 6948 (1979).
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